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Abstract: Knowledge about concrete properties is of utmost importance in engineering materials, and elastic modulus is one of concrete’s
most important properties that is used in the calculation of deformation of structures. For this reason, many researchers have attempted to
introduce various correlations between this property and the compressive strength. In this paper, support vector committee (SVC) is used for
prediction of elastic modulus of normal strength (NSC) and high-strength concrete (HSC). The SVC is based on learning theory, and deploys
the technique by introducing accuracy insensitive loss function. The comparison between concrete elastic modulus predicted by the SVC
method with the experimental data and those from other methods like support vector machine (SVM), artificial neural networks (ANN), fuzzy
logic, and other conventional methods show marked improvement in relation to the best of prediction methods with error indices constantly
less than 1%. It is therefore concluded that the SVC model is a greatly more effective method of prediction for elastic modulus of all grades of
concrete. DOI: 10.1061/(ASCE)MT.1943-5533.0000507. © 2013 American Society of Civil Engineers.
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Introduction

Concrete is perhaps the most important construction material. Im-
portant features of concrete, such as excellent resistance to water,
ability to form virtually any shape and size, and relatively low pro-
duction cost, have led to increased use of concrete in one form or
another for almost all structures, great or small (e.g., buildings,
bridges, pavement, dams, reactor vessels, retaining walls, tunnels,
drainage and irrigation facilities, and tanks) [American Concrete
Institute (ACI) Committee 318 1995]. Therefore, knowledge of the
behavior of concrete is one of the most important issues in civil
engineering.

Elastic modulus of concrete is one of the most important
mechanical properties of this crucial material. Knowledge of the
modulus of elasticity is essential for the designer in estimating
the deformation of structural elements under service conditions
in reinforced and prestressed concrete and in mass concreting.

Many authors have emphasized the importance of elastic
modulus of concrete; over the past 25 years, numerous researches
have focused on the development of the relationship between
elastic modulus and compressive strength of concrete. Baalbaki
et al. (1992) predicted elastic modulus for high-strength concrete
(HSC). Mesbah et al. (2002) determined elastic properties of
high-performance concrete, Wee et al. (1996) determined the

stress–strain relationship of HSC in compression, Turan and Iren
(1997) introduced strain–stress relationship of concrete, Demir
(2005) predicted elastic modulus of normal and high-strength
concrete by fuzzy logic and then predicted it by artificial neural
networks (Demir 2008). Finally, Yan and Shi (2010) predicted elas-
tic modulus of normal and high-strength concrete by support vector
machine.

Background Knowledge

Multiple Classifier Systems

Ensemble systems, also called committees or multiple systems,
offer a solution to regression/classification problems. The idea
of combining multiple systems or classifiers is based on the obser-
vation that achieving optimal performance in combination is not
necessarily consistent with obtaining the best performance for a
base system/classifier. The rationale is that it may be easier to opti-
mize the design of a combination of relatively simple systems than
to optimize the design of a single complex system. The increase in
accuracy by using multiple systems is at least partially a result of
diversity (Kuncheva and Whitaker 2003). Diverse systems include
a committee of various experts for obtaining better performance.

Multiple classifier systems (MCS) can be categorized from dif-
ferent points of view. One major categorization is based on the
capability of being trained, as shown in Fig. 1.

Nontrainable combiners do not need to be trained after the clas-
sifiers in the ensemble have been trained individually. Trainable
combiners need additional training after complete training of base
classifiers. The third class of ensemble systems is those that de-
velop the combiner during training of individual classifiers. Some
known trainable combiners are weighted average, fuzzy integral,
decision template, and Dempster Shafer. The most known nontrain-
able combiners are min, max, median, simple mean, product, and
majority vote.

The main motivation in this paper is based on clustering of input
space and appropriating one expert to each subspace with fuzzy

1Post Graduate Student, Civil Engineering Dept., K. N. Toosi Univ.
of Technology, Tehran, Iran. E-mail: javad.sadoghiyazdi@mymail.unisa
.edu.au

2Assistant Professor, Civil Engineering Dept., K. N. Toosi Univ. of
Technology, Tehran, Iran. E-mail: fz_kalantary@kntu.ac.ir

3Associate Professor, Computer Dept., Ferdowsi Univ. of Mashhad,
Mashhad, Iran (corresponding author). E-mail: h-sadoghi@um.ac.ir

Note. This manuscript was submitted on March 16, 2011; approved on
February 22, 2012; published online on February 23, 2012. Discussion per-
iod open until June 1, 2013; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Materials in Civil
Engineering, Vol. 25, No. 1, January 1, 2013. © ASCE, ISSN 0899-1561/
2013/1-9-20/$25.00.

JOURNAL OF MATERIALS IN CIVIL ENGINEERING © ASCE / JANUARY 2013 / 9

J. Mater. Civ. Eng. 2013.25:9-20.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
ew

 Y
or

k 
U

ni
ve

rs
ity

 o
n 

05
/1

6/
15

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000507
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000507
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000507
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000507


relation. Input space is divided to several subspaces, and in each
subspace, a support vector regression (SVR) models the subspace
data. A weighting procedure is performed using a probability den-
sity function of each subspace and gives a portion of each SVR
according to generated rules. Then results of weighted SVRs are
combined, and fitting is performed.

Review of Static Modulus of Elasticity

Although it is a very simple test and a matter of routine procedure to
determine concrete characteristic strength, evaluation of the modu-
lus of elasticity is a rather tedious task. Nevertheless, the elastic
modulus of concrete is one of the most important parameters in
design and safety evaluation for most structures. The static modulus
of elasticity for a material under tension or compression is given by
the slope of the stress–strain curve for concrete under uniaxial
loading. A full description of various parameters that influence
the modulus of elasticity of concrete is presented by Mehta and
Monteiro (2006). Ideally, elastic modulus is measured directly
on concrete samples under compression by recording the load–
deformation curve. However, this is not always easy from an ex-
perimental point of view. This testing procedure is much more
complicated and time-consuming when compared to compressive
strength tests carried out to obtain the compressive strength, fc.

There is a general agreement that the modulus of elasticity in-
creases with the increase in compressive strength of concrete.
Therefore, various national building codes have proposed a number
of formulas for normal strength concrete (NSC) and HSC.

Relationships for NSC are given as follows:
ACI 318-95 (ACI Committee 318 1995):

Ec ¼ 4.73ðfcÞ1=2 ð1Þ

TS-500 (Turkish Standardization Institute 2000):

Ec ¼ 3.25ðfcÞ1=2 þ 14 ð2Þ

Relationships fc and Ec are expressed in MPa and GPa, respec-
tively. Concrete with compressive strengths exceeding 41.37 MPa
are referred to as high-strength concretes. High-strength concretes
are sometimes used for both precast and prestressed members.

American, European, and Norwegian committees on high-strength
concrete propose the following relationships for HSC:

ACI 363 (ACI Committee 363 1984):

Ec ¼ 3.32ðfcÞ1=2 þ 6.9 ð3Þ
CEB90 (Comité Euro-International du Béton-Fédération

Internationale de la Précontrainte (CEB-FIP) Model Code 1993):

Ec ¼ 10ðfc þ 8Þ1=3 ð4Þ
NS 3473 (Norwegian Council for Building Standardization

1992):

Ec ¼ 9.5ðfcÞ0.3 ð5Þ

Review of Support Vector Regression

The SVR is a statistical learning method that generates input-output
mapping functions from a set of training data.

Support vector machines (SVM) were originally introduced by
Vapnik (1995) within the area of statistical learning theory and
structural risk minimization, and create a classifier with minimized
Vapnik–Chervonenkis (VC) dimension. SVR is a supervised learn-
ing method that generates input-output mapping functions from a
set of labeled training data. The mapping function can be either
a classification function, i.e., the category of the input data, or a
regression function.

Suppose training data fðX1;Y1Þ; ðX2;Y2Þ; : : : ; ðXl;YlÞg⊂ X × R are given, where X denotes the space of the input
patterns (e.g., X ¼ RD). ε-SVR is the most used method for support
vector regression up to now. For the purpose of estimating the
regression curves of nonlinear functions, Vapnik (1995) introduced
ε-insensitive function as the loss function, in which the selection of
design data C and ε are very important to construct the regression
functions. The data ε indicate the error expectation (requirement to
error) of the system on the estimation function in the sample data
point. The data C is the penalty for the sample data with its esti-
mation function error larger than ε.

In ε-SV regression (Vapnik 1995), the goal is to find a function
fðxÞ that has at the most ε deviation from the actually obtained
targets (yi) for all the training data. The regressor must not only
fit the given data well, but also make minimal errors in predicting
the values at any other arbitrary point in the RD. Nonlinear regres-
sion is accomplished by fitting a linear regressor in a higher dimen-
sional feature space. A nonlinear transformation ϕ is used to
transform data points from the input space (with dimension D) into
a feature space having a higher dimension L (L > D), as shown in
Fig. 2. The nonlinear mapping is denoted by ϕ∶RD → RL

This problem can be written as a convex optimization problem,
hence (Vapnik 1995)

Fig. 1. Hierarchy of MCS fusion methods

Fig. 2. Mapping of data set X by ϕ into a higher dimensional space
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Min
1

2
kWk2 þC

�Xl
i¼1

ðξi þ ξ�i Þ
�

s:t. yi −WTϕðXiÞ− b ≤ εþ ξi

− yi þWTϕðXiÞ þ b ≤ εþ ξ�i ξi; ξ�i ≥ 0 ∀ i ¼ 1; : : : ; l

ð6Þ

where C > 0 = constant; and ξi, ξ�i = slack variables for soft margin
SVR, which allow accepting some deviation larger than ε for
precision.

In most cases, the optimization problem, Eq. (6), can be solved
more easily in its dual formulation

Max − 1

2

Xl
i;j¼1

ðαi − α�
i Þðαj − α�

jÞKðXi;XjÞ − ε
Xl
i¼1

ðαi þ α�
i Þ

þ
Xl
i¼1

yiðαi − α�
i Þ s:t

Xl
i¼1

ðαi − α�
i Þ ¼ 0; αi;α�

i ∈ ½0;C�

ð7Þ

where αi, α�
i = Lagrange coefficients; and matrix K = kernel matrix

with its elements given by KðXi;XjÞ ¼ ϕðXiÞTϕðXjÞ;
i; j ¼ 1; 2; : : : ;M.
By solving Eq. (7) the Lagrange coefficients can be found, and

replacing them, yields

W ¼
Xl
i¼1

ðαi − α�
i Þ × ϕðXiÞ; thus

fðxÞ ¼
Xl
i¼1

ðαi − α�
i ÞKðx;XiÞ þ b ð8Þ

SVR can use arbitrary kernel function, but for most application
problems, including this work, several kernel functions in common
use, such as exponential radial basis function (erbf) kernel, radial
basis function (rbf) kernel, and polynomial kernel, are chosen. The
erbf kernel function is expð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx − ck2
p

=2σ2Þ, where c is a con-
stant and σ is the width of Gaussian. The rbf kernel function is
expð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx − ck2
p

=2σ2Þ, where c is a constant and σ is the width
of Gaussian. The polynomial kernel function is ðkxk2 þ 1Þp, where
p is the degree of polynomial function (Haykin 1999).

Support Vector Committee

As previously mentioned, the support vector machine is an approxi-
mate implementation of the method of structural risk minimization.
Some problems in the SVR are as follows:
1. Because each sample is one constraint in the support vector,

increasing training samples is equivalent to increasing the

Fig. 3. Assigning weights to the input data

Fig. 4. Applying SVR in each partition

Table 1. Statistics of Parameters for the Training and Testing Subsets Used
in Development of the SVC Model

Statistical
parameters Subset

Input and output parameters

NSC HSC

fc (Mpa) Ec (GPa) fc (Mpa) Ec (GPa)

Max Training 47.70 36.80 125.60 53.20
Testing 37.50 32.60 100.60 50.50

Min Training 14.00 15.60 46.40 35.20
Testing 16.20 18.00 57.90 40.80

Mean Training 27.61 28.12 85.48 45.82
Testing 25.28 26.02 82.34 44.77

Standard
deviation

Training 6.32 4.00 13.83 2.71

Testing 5.38 3.86 11.98 2.53

Fig. 5. Testing procedure
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Table 2. Average RMSE and MAPE of SVC Method for Training and Testing Data from NSC

Kernel

Average MAPE (%) Average RMSE

Data set Cluster ¼ 2 Cluster ¼ 3 Cluster ¼ 4 Cluster ¼ 2 Cluster ¼ 3 Cluster ¼ 4

erbf Train 0.869 0.592 1.420 0.264 0.202 0.437
erbf Test 1.148 0.912 1.942 0.400 0.266 0.521
rbf Train 1.242 4.367 1.347 0.357 0.729 0.530
rbf Test 1.648 6.934 0.894 0.452 0.709 0.288
poly (p ¼ 2) Train 1.774 5.452 7.127 0.500 1.602 2.320
poly (p ¼ 2) Test 1.924 4.453 7.634 0.518 1.123 1.998
poly (p ¼ 3) Train 0.794 2.079 1.884 0.246 0.627 0.626
poly (p ¼ 3) Test 1.012 1.235 3.726 0.286 0.347 0.944
poly (p ¼ 4) Train 2.724 1.773 2.793 0.800 0.554 0.872
poly (p ¼ 4) Test 1.977 0.874 0.878 0.602 0.287 0.279

Table 3. Average RMSE and MAPE of SVC Method for Training and Testing Data from HSC

Kernel

Average MAPE (%) Average RMSE

Data set Cluster ¼ 2 Cluster ¼ 3 Cluster ¼ 4 Cluster ¼ 2 Cluster ¼ 3 Cluster ¼ 4

erbf Train 0.238 0.423 0.847 0.147 0.221 0.412
erbf Test 0.615 0.933 1.250 0.324 0.463 0.598
rbf Train 0.425 5.112 1.444 0.226 2.413 0.674
rbf Test 0.505 5.443 1.794 0.278 2.459 0.828
poly (p ¼ 2) Train 1.290 1.019 0.431 0.636 0.496 0.254
poly (p ¼ 2) Test 1.061 0.711 0.527 0.548 0.393 0.289
poly (p ¼ 3) Train 1.120 1.660 1.852 0.533 0.804 0.868
poly (p ¼ 3) Test 0.677 1.459 1.456 0.374 0.715 0.715
poly (p ¼ 4) Train 0.305 1.372 3.150 0.170 0.682 1.456
poly (p ¼ 4) Test 0.224 1.184 2.775 0.419 0.601 1.280

Fig. 7. Sensitivity study of α parameter and kernel (erbf, rbf, and
polynomial 2, 3, and 4) on MAPE and RMSE for HSC per cluster 2

Fig. 6. Sensitivity study of α parameter and kernel (erbf, rbf, and
polynomial 2, 3, and 4) on MAPE and RMSE for NSC per cluster 3
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number of constraints. In this case, solving equations to find
the optimal hyperplane becomes very hard.

2. Finding a suitable kernel for modeling of nonlinear space.
SVC is based on the divide and conquer principle, which can

solve the two aforementioned problems. Input space is divided into
several subspaces, and in each subspace a SVR model of the data is
made. This causes the new generated space to have the properties of
high-dimensional space. Aweighting procedure is performed using
a probability density function on each subspace and gives a portion
of each SVR model according to the generated rules. Then, results
of weighted SVRs are combined and fitting is performed. In other
words, instead of using a single SVR model over the whole space,
SVR is applied to subspaces.

The SVC method is described in detail in the following steps
(Huang and Shen 2008):

Step 1: First, input training data is divided into n subsets. An
algorithm of clustering, like fuzzy C-means (FCM), can
be used for this grouping (see more details in the appen-
dix). Indeed, the weights assigned to any input data
using FCM (Fig. 3) shows three partitions (for example)

that FCM has clustered. The probability density function
(PDF) of each cluster is obtained, as shown in the
following figure, then the corresponding weights of the
input data are calculated based on membership values to
each partition (i.e., clusters).

Step 2: Each available subset for any partition is applied for
training of each SVR (see Fig. 4). For training samples

Fig. 8. NSC data clustering

Fig. 9. HSC data clustering

Table 4. Statistical Parameters of Membership Values for Each Test
Sample

Statistical
parameters Subset

Membership values for each test sample (Wi)

HSC NSC

W1 W2 W1 W2 W3

Max Training 0.372 0.439 1.03E-02 3.72E-01 4.39E-01
Testing 0.37198 0.43928 0.01033 0.37198 0.43928

Min Training 0.08637 0.20702 5.25E-26 4.14E-64 1.22E-70
Testing 0.08637 0.20702 0.01033 0.08602 0.07039

Mean Training 0.30457 0.40724 1.59E-03 3.25E-02 4.18E-02
Testing 0.2511 0.37526 0.00689 0.21992 0.2815
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of partition 1 (as shown in Fig. 3), SVR1 is trained as
shown in Fig. 4.
In this paper, some kernel functions, such as polyno-
mials and radial basis functions, have been used for
SVR to obtain the best state.

Step 3: The third step is the testing procedure. The hold out
method is used for computing average error of the

proposed method and comparing it with other methods.
To calculate the output of the proposed system, member-
ship values for each test sample (Wi) should be com-
puted. By applying Eq. (9) for any test sample,
corresponding weights to the test samples are obtained,
and then these weights are normalized by dividing any
weight to the sum of them. At the end, these normalized

Table 5. Comparison of Errors Estimated by SVC and Other Models for Training Data from NSC

fc (MPa) Ec (GPa) ACI 318 TS 500
Regression

(Demir 2005)
Fuzzy

(Demir 2005)
ANN

(Demir 2008)
SVM (Yan

and Shi 2010) SVC

31.4 30.4 −4 1.8 −0.6 −0.3 −0.9 −0.6 0.086
27.8 29.1 −4.1 2 −0.9 −0.9 −0.9 −0.3 −0.040
28.5 26.8 −1.6 4.6 1.9 1.9 1.6 2.4 0.091
29.4 31.5 −6 0 −2.5 −2.5 −2.8 −2.2 −0.084
26.4 30 −5.7 0.6 −2.4 −2.4 −2.4 −2.1 −0.018
28.5 29 −3.8 2.3 −0.3 −0.3 −0.6 0 0.024
32.6 32.4 −5.5 0 −1.9 −1.6 −2.3 −2.6 −0.130
29.9 30.2 −4.2 1.5 −0.9 −0.9 −1.2 −0.6 −0.015
29.8 27.5 −1.7 4.1 1.7 1.7 1.4 1.9 0.121
28 30.8 −5.9 0.3 −2.5 −2.5 −2.5 −1.8 −0.042
27.3 26.5 −1.9 4.5 1.6 1.6 1.3 2.1 0.156
27.5 25.2 −0.5 5.8 3 3 2.8 3.3 0.208
27 27.2 −2.7 3.8 0.8 0.8 0.5 1.1 0.108
28.5 27.3 −1.9 4.1 1.4 1.4 1.1 1.9 0.101
26.4 26.5 −2.1 4.2 1.3 1.3 1.1 1.6 0.138
27.1 23.9 0.7 6.9 4.1 4.1 4.1 4.5 0.256
26.3 24 0.2 6.7 3.6 3.6 3.6 4.1 0.250
26.1 24.9 −0.7 5.7 2.7 2.5 2.5 3 0.206
27.8 25.3 −0.3 5.8 3 3 2.8 3.5 0.182
25.7 25.7 −1.8 4.9 1.8 1.5 1.5 1.8 0.163
27.8 26 −1 5.2 2.3 2.3 2.1 2.6 0.145
28.6 27.5 −2.2 3.9 1.1 1.4 1.1 1.4 0.075
27.9 26.2 −1 5 2.1 2.4 2.1 2.6 0.134
18.4 21.9 −1.8 5.9 1.8 2 3.1 −1.5 0.309
23.4 26.3 −3.4 3.4 0 0 0.3 −0.5 0.100
29.9 30.4 −4.6 1.5 −1.2 −0.9 −1.5 −0.9 −0.088
22.9 26.5 −4 2.9 −0.5 −0.5 −0.3 −1.3 0.093
23.7 27.2 −4.1 2.7 −0.8 −0.8 −0.5 −1.1 0.060
27.4 27.1 −2.4 3.8 1.1 1.1 0.8 1.6 0.064
14 15.6 0.2 10.9 5.5 4.2 8.3 −0.5 0.606
16.9 20.5 −1 7 2.5 1.2 4.1 −1.8 0.367
17.1 26.3 −6.8 1.1 −3.2 −4.5 −1.6 −5.3 0.088
18 28.8 −8.6 −1.2 −5.2 −6.3 −4 −4.6 −0.034
18.5 30.1 −9.6 −0.21 −6.3 −7.2 −5.1 −5.4 −0.099
21.8 20.9 1.3 8.4 4.6 4 5 3.3 0.315
25.8 28.6 −4.6 2 −1.1 −1.1 −1.1 −0.9 −0.048
27.3 32.9 −8.2 −2 −4.9 −4.9 −4.9 −4.3 −0.249
30.3 35.9 −9.7 −3.9 −6.5 −6.5 −6.8 −6.1 −0.387
29.6 36.8 −11 −5.2 −6.7 −7.7 −8.1 −7.4 −0.422
19.6 23.1 −2.1 5.3 1.2 0.2 2.3 −1.4 0.203
19.4 30.3 −9.4 −1.8 −6.1 −7 −4.8 −7.6 −0.133
20.9 23.9 −2.2 5 1.2 0.5 1.9 −0.7 0.154
21.2 26.5 −4.8 2.4 −1.3 −2.1 −0.8 −2.9 0.025
23.6 32.1 −9 −2.2 −5.8 −6.1 −5.5 −6.1 −0.239
24.2 33.6 −10.4 −3.7 −7.1 −7.1 −6.7 −5 −0.309
31.8 25.5 1 6.9 4.3 4.6 4.3 4.3 0.073
32.2 27.4 −0.5 4.9 2.7 3 2.5 2.5 −0.015
30.6 28.6 −2.3 3.4 0.9 0.9 0.9 1.1 −0.071
29.6 31.6 −6 0 −2.5 −2.5 −2.8 −2.2 −0.206
35 35.6 −7.5 −2.5 −4.3 −3.9 −4.3 −6.1 −0.383
32.8 36.7 −9.5 −4 −6.2 −6.2 −6.6 −7 −0.433
38.4 26.6 2.7 7.7 5.9 6.9 6.4 1.3 0.038
35.7 30.1 −1.8 3.3 1.5 2.1 1.5 −0.9 −0.122
42.7 34.1 −3.1 1 0 1.7 1 −4.4 −0.295
36.8 29.3 −0.6 4.4 2.6 3.2 2.9 −0.6 −0.064
40.1 28.4 1.4 6.2 4.8 6 5.4 −1.1 −0.019
47.7 29.6 3 6.8 5.9 8.9 7.7 −4.4 −0.076
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Table 6. Comparison of Errors Estimated by SVC and Other Models for Training Data from HSC

fc
(MPa)

Ec
(GPa)

ACI
363 CBE

NS
3473

Wee et al.
1996

Gesoglu
et al. 2002

Regression
(Demir 2005)

Fuzzy
(Demir 2005)

ANN
(Demir 2008)

SVM (Yan
and Shi 2010) SVC

63.2 41.8 −8.4 −0.4 −8.8 −1.3 −3.3 −1.7 0.4 0.8 2.9 0.199
72 43 −8.2 −0.4 −9 −0.9 −2.2 −0.9 0 0.9 0 0.116
65.1 41.5 −7.9 0.4 −8.3 −0.4 −2.5 −0.8 0.8 1.2 2.5 0.203
70.5 40.4 −5.7 2.4 −6.5 1.6 0.4 1.6 2.8 3.6 2.4 0.263
71.5 41.4 −6.6 1.7 −7 0.8 0 0.8 2.1 2.9 1.7 0.202
63.6 42.6 −9.4 −1.3 −9.4 −1.7 −3.8 −2.1 −0.4 0 2.1 0.138
85.9 45 −7.2 0.5 −9 0 0.9 0.9 0.5 0.5 0 0.012
90.2 44.4 −5.8 1.8 −7.5 1.3 2.7 2.2 1.8 1.3 1.3 0.052
85.9 44.3 −6.6 1.3 −8 0.9 1.3 1.3 1.3 1.3 0.4 0.062
81.2 43.9 −7 0.9 −8.3 0.4 0.4 0.9 0.9 1.3 0 0.085
88.1 44.5 −6.2 1.3 −8 0.9 1.8 1.8 1.3 1.3 0.9 0.054
81.6 43.8 −7 0.9 −8.3 0.4 0.4 0.9 1.3 1.3 0 0.094
84.8 47.2 −9.9 −1.9 −11.3 −2.4 −1.9 −1.4 −1.9 −1.9 −2.4 −0.092
85.6 45.6 −8.2 0 −9.6 −0.5 0 0 0 0 −0.9 −0.002
96.2 46.6 −7 0.5 −9.3 0 2.3 1.4 0.5 0.9 0 −0.053
46.4 35.2 −5.6 2.8 −5.3 1.4 −3.2 0 2.8 1.4 0 0.572
73.9 41.6 −6.2 1.7 −7.1 1.2 0.4 1.2 2.1 2.9 1.2 0.213
87.6 44.5 −6.7 1.3 −8 0.9 1.8 1.8 1.3 1.3 0.9 0.054
93.1 45.4 −6.4 1.4 −8.2 0.9 2.3 1.8 1.4 2.3 0.9 0.007
95.3 45.2 −5.9 1.8 −8.1 1.4 3.2 2.7 1.8 2.3 1.4 0.021
102.1 46.1 −5.5 1.8 −7.8 1.4 4.1 3.2 2.3 1.4 0.9 −0.026
102.8 46.7 −6.1 1.4 −8.4 0.9 3.7 2.8 1.9 0.9 0.5 −0.058
106.3 48.4 −7.3 0 −9.7 0 2.9 1.9 0.5 −0.5 −1.5 −0.150
104.2 46.3 −5.6 1.9 −7.9 1.9 4.6 3.2 2.3 1.4 0.9 −0.031
94.6 47.3 −8 −0.5 −9.9 −0.9 0.9 0.5 −0.5 0 −0.9 −0.084
94 46.3 −7.4 0.5 −9.3 0 1.9 1.4 0.5 1.4 0 −0.027
96.6 46.5 −7 0.5 −9.3 0.5 2.3 1.9 0.9 0.9 0 −0.036
91.5 45.9 −7.3 0.5 −9.2 0 1.4 1.4 0.5 1.4 0 −0.001
91.7 46 −7.4 0.5 −9.2 0 1.4 0.9 0.5 1.4 0 −0.005
119.9 49.1 −5.9 1.5 −9.3 1 5.9 3.9 2 0 0.5 −0.175
125.6 50.9 −6.6 0 −10.2 0 5.6 3.1 1 0 0 −0.273
77.2 47.1 −10.8 −3.3 −12.2 −4.2 −3.8 −3.3 2.8 −2.4 −3.8 −0.061
66.5 46.8 −12.6 −4.7 −13.1 0.7 −5.6 −5.6 −4.2 −3.7 −3.3 −0.043
70.7 47.3 −12.3 −4.3 −13.2 −6.1 −5.2 −5.2 −4.3 −3.3 −4.3 −0.072
61.8 45.4 −12.3 −4.1 −12.7 −7.3 −5 −5.4 −3.6 −3.2 0 0.034
68.9 47.6 −12.3 −5.2 −13.8 −7.1 −5.7 −5.7 −4.8 −3.8 −4.3 −0.087
62.2 45.4 −12.3 −4.1 −12.7 −7.3 −5 −5.4 −3.6 −3.2 0 0.036
75.8 43 −7.3 0.9 −8.2 −0.4 0 0.4 0.9 1.7 0 0.168
67.7 48.2 −14 −5.8 −14.5 −1.2 −6.7 −6.7 −5.3 −4.8 −4.8 −0.119
53.6 46.2 −14.8 −6.9 −14.8 −11.1 −7.9 −8.8 −5.5 −6.5 0 −0.007
92.9 46.4 −7.4 0 −9.3 1.4 0 0.9 0.5 0.9 0 −0.018
94 48.3 −9.2 −1.4 −11.1 0 −1.9 −0.5 −1.4 −1 −1.9 −0.123
97.7 47 −7.1 0.5 −9.4 2.4 0 1.4 0.5 0.5 0 −0.049
102 48.8 −8.3 −1 −10.7 1.5 −1 0.5 −0.5 −1 −2 −0.149
86.2 47.1 −9.4 −1.4 −10.8 −1.4 −1.9 −1.4 −1.4 −1.4 −2.4 −0.054
87.9 43 −5.2 2.6 −6.5 3.4 2.2 3.4 3 2.6 2 0.173
82.7 45.4 −8.2 −0.5 −9.5 −0.5 −0.9 −0.5 −0.5 0 −1.4 0.039
79.1 44.7 −8.5 −0.4 −9.4 −0.9 −0.9 −0.4 0 0.4 −0.9 0.078
86.9 46.1 −8.3 −0.5 −9.7 0 −0.9 0 −0.5 −0.5 0.5 0.000
85.5 44.3 −6.6 0.9 −8.4 1.3 0.4 1.3 1.3 1.3 −5.3 0.100
91.1 46.8 −8.4 −0.5 −9.8 0.5 −0.9 0 −0.5 0.5 −0.9 −0.039
96.7 53.2 −13.8 −5.9 −16 −4.3 −6.4 −4.8 −5.9 −5.9 6.4 −0.393
91.2 49.3 −10.8 −3 −12.3 −2 −3.5 −2.5 −3 −2 −3.5 −0.176
83.8 45.9 −8.7 −0.9 −10.1 −0.9 −1.4 −0.5 −0.5 −0.5 −1.4 0.013
87.1 47.7 −10 −1.9 −11.4 −1.4 −2.4 −1.4 −1.9 −1.9 −2.4 −0.087
93.2 46.2 −7.4 0.5 −9.2 1.8 0 1.4 0.5 1.4 0 −0.003
86.9 46.1 −8.3 −0.5 −9.7 0 −0.9 0 −0.5 −0.5 −0.9 0.002
90.7 48.1 −9.6 −1.9 −11.5 −1 −2.4 −1 −1.9 −1 −2.4 −0.108
89.5 47.6 −9.5 −1.4 −10.9 −1 −1.9 −1 −1.4 −1.9 −1.9 −0.080
87.8 45.4 −7.3 0.5 −9.1 0.9 0 0.9 0.5 0.5 0 0.042
95.2 50.8 −11.7 −4.1 −13.7 −2.5 −4.1 −3 −3.6 −3 −4.1 −0.258
92.2 50 −11 −3.5 −13 −2.5 −4 −3 −3.5 −2.5 −4.5 −0.213
97.6 49.3 −9.4 −2 −11.8 0 −2.5 −1 −2 −1.5 −2.5 −0.173
87.5 48.5 −10.7 −2.9 −12.1 −2.4 −3.4 −2.4 −2.4 −2.9 −3.4 −0.129
80.4 43.2 −6.5 1.3 −7.8 0.9 0.9 1.3 1.7 1.7 0.4 0.165
86.5 44.2 −6.6 1.3 −8 1.8 0.9 1.8 1.3 1.3 0.9 0.109
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weights are multiplied by each test sample to generate
final values. Fig. 4 shows this procedure.

wi ¼
1

ð2πÞd=2j ~Σj1=2 exp
�
− 1

2
ðx − μÞt ~Σ−1ðx − μÞ

�
ð9Þ

where ~Σ ¼ αΣ and Σ = covariance samples; μ = mean
value of training data; d = length of feature vector; α =
variable to control spreading of each Gaussian distribu-
tion that is considered for samples of the training set;
xt = test sample; and j · j = determinant.

The output value in Fig. 5 is the computed value for elastic
modulus of the test sample. To compute error of the hold out
method for evaluation of performance of the proposed method, root
mean square error (RSME) and mean absolute percentage error
(MAPE) are used.

Support Vector Committee for Prediction of Elastic
Modulus of NSC and HSC

As previously mentioned, many methods have been proposed for
the prediction of elastic modulus of concrete from its compressive
strength. This study attempts to use support vector committee
(SVC) for the prediction of elastic modulus. The experimental
results from Wee et al. 1996; Gesoglu et al. 2002, and Yan and
Shi 2010 for HSC (Ozturan 1984; Turan and Iren 1997) and for
NSC (Yan and Shi 2010) are used in this study. For the SVC, the
inputs are fc, and the output is the measured elastic modulus. The
training and test data sets used in this paper have been obtained
from previous experimental works (Demir 2005). From a total of
70 and 89 case histories of recorded NSC and HSC, respectively,
57 and 69 cases were used for training of the SVC models,
whereas the remaining 13 and 20 cases were used for testing
of the trained SVC models. The statistical parameter is shown
in Table 1.

Numerical investigation was carried out and the fuzzy re-
sults were compared with those of test data and some other
available literature. Numerical results revealed a good agreement
between the test and fuzzy results. To have an objective com-
parison of the performance of the models against the experi-
mental results, the error measured by the root mean square error
(RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPn

i¼1 err
2
i Þ=n

p
) and mean absolute percentage error

(MAPE ¼Pn
i¼1 jerri=Ecj × 100) were computed for each model,

where err is the difference between predicted and experimented
values, and n is the number of data sets.

SVC Parameters Sensitivity

In this section, the concrete elastic modulus is calculated by the
proposed SVC. The cluster and α parameters greatly affect the re-
sults of the SVC model. The values of the cluster, α, and kernel
types were chosen by a trial-and-error approach. The hold out
method (separate training and testing data sets are used) was used
for testing the proposed method with different kernel functions
for SVC and different values for α (0.1, 0.2, : : : , 0.8 for NSC
and 5, 10, : : : , 40 for HSC) and clusters (that considered 2, 3,
and 4).

In the training process, RMSE and the MAPE were used as the
main criteria to evaluate the performance of the SVC model.

Kernels are discussed in the literature, but it is important to
choose one that gives the best generalization with a given data
set. Because the choice of kernel may affect the prediction
capacities of the SVC’s RMSE and MAPE, values were compared
to appraise a suitable choice of kernels. Three types of kernel func-
tions have proven to be better than other kernels, namely erbf, rbf,
and the polynomial function for NSC and HSC.

Average RMSE and MAPE (%) of the SVC method for training
and testing data from NSC and HSC per different cluster and kernel
functions is shown in Tables 2 and 3. The erbf kernel function with
cluster 3 for NSC data and the erbf kernel function with cluster 2 for

Table 6. (Continued)

fc
(MPa)

Ec
(GPa)

ACI
363 CBE

NS
3473

Wee et al.
1996

Gesoglu
et al. 2002

Regression
(Demir 2005)

Fuzzy
(Demir 2005)

ANN
(Demir 2008)

SVM (Yan
and Shi 2010) SVC

83.9 44.3 −7.1 0.9 −8.4 0.9 0.4 0.9 0.9 1.3 0 0.104
80.9 44.6 −8 0 −8.9 −0.4 −0.4 0 0.4 0.4 −0.9 0.086
85.7 45.1 −7.7 0.5 −9 0.5 0 0.9 0.5 0.5 −0.5 0.058

Table 7. Comparison of Errors Estimated by SVC and Other Models for Testing Data from NSC

fc (MPa) Ec (GPa) ACI 318 TS 500
Regression

(Demir 2005)
Fuzzy

(Demir 2005)
ANN

(Demir 2008)
SVM (Yan

and Shi 2010) SVC

29.4 30 −7.3 −1.3 −4 −4 −4.3 −3.3 −0.231
28.8 29 −3.5 2.3 −0.3 −0.3 −0.6 0.3 −0.160
27.7 25.6 −0.8 5.4 2.6 2.6 2.6 3.1 0.074
22.1 21.8 0.4 7.4 3.9 3.7 4.4 2.6 0.333
28.9 26.8 −1.3 4.6 1.9 2.1 1.9 2.4 −0.006
20.6 23.9 −2.4 4.8 1 1 1.7 −1 0.184
25.3 28.1 −4.2 2.2 −0.8 −0.8 −0.8 −0.8 −0.102
16.2 23.3 −4.2 3.7 −0.7 −2.1 1.2 −3.5 0.226
23.2 23.9 −1.2 5.7 2.4 1.9 2.6 1.7 0.185
17.9 18 2 9.7 5.4 4.3 6.8 1.8 0.587
23.9 30.5 −7.3 −0.6 −4 −4.3 −3.7 −4.3 −0.269
27.1 24.7 0 6.2 3.5 3.2 3.2 4 0.129
37.5 32.6 −3.6 1.3 −0.3 0.3 0 −4.2 −0.412
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HSC data has desirable accuracy. Tables 2 and 3 show that three
and two clusters give the best results for NSC and HSC, respec-
tively. Hence, sensitivity analysis of the α parameter and the kernel
(erbf, rbf, and polynomial 2, 3, and 4) on the MAPE and the RMSE
for these numbers of clusters are shown in Figs. 6 and 7. In these
figures, MAPE and RMSE for the train and test data for the kernel
(erbf, rbf, polynomial 2, 3, and 4) and various α parameters have
been examined. Results presented in Fig. 6 show that for NSC, the
erbf kernel has the least error for the training data and polynomial
kernel (p ¼ 3 and 4) for the test data at α ¼ 0.6. Examination of
Fig. 7 for HSC reveals that the erbf kernel has the least error for
both train and test data at α ¼ 35.

Quantitative Evaluation of SVC Procedure

The role of the α parameter and clustering were explained in the
previous section. This section further expands on the evaluation of
the membership value (w). To be precise, the membership value of
each test data point in the Gaussian membership function obtained
from the train data in the cluster is calculated. Details of this
process are as follows:

The NSC data has been subdivided into three clusters:
14 ≤ fc ≤ 24 MPa, 24 < fc < 35 MPa, and fc ≥ 35 MPa, whereas
the HSC data was split into two clusters of 46 ≤ fc ≤ 80
and fc > 80.

Fig. 10. Comparison between SVC and other models in terms of
MAPE for NSC

Fig. 11. Comparison between SVC and other models in terms of
MAPE for HSC

Fig. 12. Comparison between SVC and other models in terms of
RMSE for NSC

Table 8. Comparison of Errors Estimated by SVC and Other Models for Testing Data from HSC

fc
(MPa)

Ec
(GPa)

ACI
363 CBE

NS
3473

Wee et al.
1996

Gesoglu
et al. 2002

Regression
(Demir 2005)

Fuzzy
(Demir 2005)

ANN
(Demir 2008)

SVM (Yan
and Shi 2010) SVC

69.7 41.5 −7.1 1.2 −7.5 0.4 −0.8 0.4 1.7 2.5 1.7 0.537
78.3 44.3 −8 0 −9.3 −0.4 −0.9 −0.4 0 0.4 −0.9 0.248
82.6 44.2 −7.1 0.9 −8.4 0.4 0.4 0.9 0.9 1.3 0 0.259
65.8 40.8 −0.69 1.2 −7.3 0.4 −1.6 0 1.6 2.4 3.3 0.610
100.6 45.8 −5.5 1.8 −7.8 1.8 4.1 3.2 2.3 1.8 0.9 0.095
92.8 45.8 −6.9 0.9 −8.7 0.5 1.8 1.4 0.9 1.8 0 0.096
93.6 47.1 −8 −0.5 −9.9 −0.9 0.9 0.5 0 0.5 −0.9 −0.038
71.5 48 −13 −4.8 −13.9 −6.7 −5.8 −5.8 −4.8 −3.8 −3.4 −0.132
59.1 40.9 −8.6 −0.4 −8.6 −4.1 −1.2 −1.6 0.4 0.4 3.3 0.599
57.9 44.5 −12.5 −4 −12.5 −8 −4.9 −5.8 −3.1 −3.6 1.8 0.226
93.7 50.5 −11.6 −4 −13.6 −2.5 −4 −3 −3.5 −3 −4 −0.392
85.3 45 −7.7 0.5 −9 0.5 0 0.9 0.5 0.5 0 0.176
99.7 47.6 −7.6 0 −10 1.9 −0.5 1.4 0.5 0 −1 −0.092
85.1 44.7 −7.2 0.4 −8.5 0.9 0 0.9 0.9 0.9 0 0.208
90.3 45 −6.8 1.4 −8.1 2.3 0.9 1.8 1.4 0.9 0.9 0.177
87.2 41.1 −3.3 4.5 −4.9 4.9 4.1 4.9 4.9 4.5 4.1 0.580
84.5 45.3 −7.7 0 −9.5 0 −0.5 0 0 0 −0.9 0.147
77 47.2 −11.3 −3.3 −12.3 −3.8 −4.2 −3.3 −4.7 −2.4 −2.4 −0.049
86 43.8 −6.1 1.8 −7.4 1.3 2.2 2.2 0 1.8 1.3 0.302
86 42.3 −4.7 3 −6.3 2.5 3.4 3.4 1.7 3.4 2.5 0.457
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A number of data points (15, 35, and 7 for NSC and 18 and 51
for HSC) were used as the training set, and the rest were used as test
data. Membership value (w) of each test data point in the Gaussian
membership function obtained from the training data of each clus-
ter were calculated using Eq. (9). Details of some of the data points
and the clustering are shown in Figs. 8 and 9 for NSC and HSC,
respectively.

Finally, statistical information of the membership values for
train and test data is presented in Table 4.

Comparison of Calculated Result with Conventional
Method

The errors computed by the SVC model, other researchers’models,
and experimental results for training and testing data sets for NSC
and HSC are shown in Tables 5–8.

Based on the comparison of the results presented in the tables, it
may be concluded that the SVC can predict the elastic modulus of
NSC and HSC with very high accuracy.

A further comparison between SVC and other available models
can be made using MAPE (%) and RMSE for NSC and HSC. The
results are shown in Figs. 10–13.

Conclusion

In this paper, the SVC method is used for prediction of elastic
modulus of NSC and HSC. The effects of several parameters on
experimental data have been studied, and appropriate values of
parameters selected are shown in Table 9.

The next step, elastic modulus estimated by SVC, considers
appropriate values of parameters, and the difference between esti-
mated and experimental values were calculated. The error was
compared with the results of the best predictions to date (i.e., the
ANN and SVM methods), and it was shown that marked improve-
ment with respect to the best of other methods may be attained by
the SVC method. A representation of the accuracy of the method is
shown in Figs. 14 and 15.

Finally, the estimated accuracy is calculated by MAPE and
RMSE as error criteria and compared with other researchers’ mod-
els. The MAPE values for NSC and HSC decreased from 10 and
4%, respectively, to less than 1%. The values of RMSE for NSC
and HSC decreased from 3 to less than 0.3.

Table 9. Parameter Appropriate Values Used in SVC

Data type Kernel function Cluster α

NSC erbf 3 0.6
HSC erbf 2 35

Fig. 14. Comparing error of ANN, SVM, and SVC for NSC data set

Fig. 13. Comparison between SVC and other models in terms of
RMSE for HSC

Fig. 15. Comparing error of ANN, SVM, and SVC for HSC data set
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It may therefore be concluded that SVC is the most effective
method for prediction of elastic modulus of all grades of concrete
from their compressive strength.

Appendix. Fuzzy C-Means

In this section, the conventional fuzzy C-means algorithm (Bezdek
1981) is mentioned, which is one of the most widely used fuzzy
clustering methods. The FCM clustering method is the fuzzy
equivalent of the nearest mean hard clustering method. The FCM
clustering method assigns fuzzy memberships to each input
member. The aim of the FCM algorithm is to minimize the follow-
ing objective function with respect to fuzzy membership, uik, and
cluster centroid, vi.

JmðU;VÞ ¼
Xn
k¼1

Xc
i¼1

umi;kd
2ðxk; viÞ ð10Þ

d2ðxk; viÞ ¼ ðxk − viÞTðxk − viÞ ¼ kxk − vik2 ð11Þ

where X ¼ fx1; x2; : : : ; xng = set of features vectors and is a finite
set of p-dimensional vectors over the real numbers
(xk ¼ ½xk;1; xk;2; : : : ; xk;p�T for, ¼ 1; : : : ; n); c = number of clus-
ters; and m > 1 = fuzziness index. The matrix U ¼ ½ui;k�c×n =
fuzzy membership degree that has following constraint:

ui;k ∈ ½0; 1�; i ¼ 1; 2; : : : ; c; k ¼ 1; 2; : : : ; n

Xc
i¼1

ui;k ¼ 1; k ¼ 1; 2; : : : ; n

0 <
Xn
k¼1

ui;k < n; i ¼ 1; 2; : : : ; c.

ð12Þ

where uik = membership grade of kth numbers to ith cluster;
V ¼ fv1; v2; : : : ; vcg = cluster prototypes set; and vi ¼
½vi;1; vi;2; : : : ; vi;p�T ∈ Rp; i ¼ 1; 2; : : : ; c = center of ith cluster.

By creating Lagrange function, JmðU;VÞ can be minimized
subject to the constraints in Eq. (12) and conclude updating related
as follows:

LðV;U;λÞ ¼
Xn
k¼1

Xc
i¼1

umi;kðxk − viÞTðxk − viÞ

−Xn
k¼1

λk

�Xc
i¼1

ui;k − 1

�
; ð13Þ

∂L
∂ui;k ¼ 0;

∂L
∂λk ¼ 0

⇒ ui;k ¼
 Xc

j¼1

�
d2ðxk; viÞ
d2ðxk; vjÞ

�
1=m−1

!−1

¼
 Xc

j¼1

�kxk − vik
kxk − vjk

�
2=m−1

!−1
;

for i ¼ 1; 2; : : : ; c and k ¼ 1; 2; : : : ; n ð14Þ

∂L
∂vi ¼ 0 ⇒ vi ¼

P
n
k¼1ðui;kÞmxkP
n
k¼1ðui;kÞm

; for i ¼ 1; 2; : : : ; c. ð15Þ
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Notation

The following symbols are used in this paper:
c = kernel function constant;

Ec = concrete elastic modulus;
err = difference between predicted and experimented values;
fc = compressive strength;
K = kernel matrix;
w = energy;
xt = test sample;

α, α� = Lagrange coefficient;
ε = insensitive function as the loss function;
μ = mean value of training data;

ξi, ξ�i = slack variables for soft margin SVR;
σ = width of Gaussian; and
ϕ = nonlinear transformation.
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